Table of Contents

1. Introduction ... 1

2. Broadening the Role of TDM ... 1
 Using TDM to Support Diverse Regional Goals .. 1
 Beyond Commute Trips .. 2
 TDM for Freight .. 3
 Beyond Day-to-Day Travel Conditions: Active Demand Management ... 4

3. Targeting Demand Management Strategies ... 5
 Tailoring Approaches to Sub-Regional Context .. 5
 Programs and Initiatives Targeted to Special Populations ... 6

4. Local and Subarea Planning and Policy: Making Connections to Land Use and Parking 7
 TDM Development Requirements or Proffers ... 7
 Eliminating Parking Minimums .. 8
 Dynamic Curbside Pricing .. 8
 Parking Cash Out and Commuter Benefits Ordinances ... 9
 Congestion Pricing ... 10

5. Integrating TDM in Regional Planning and Processes .. 10
 Developing Regional Goals and Performance Measures that Support Multimodal Choices 10
 Integrating TDM in the Congestion Management Process ... 11
 Addressing TDM in Programming / Project Prioritization ... 12

6. Corridor-Focused Initiatives / Integrated Corridor Management ... 12

7. Integrating TDM into On-Going System Management and Operations 14
 Integrating TDM in Traveler Information ... 14
 TDM for Incidents, Emergency Events, and Road Weather Management 15
 Special Events Management .. 16
 TDM for Work Zone Management and Temporary System Disruptions 17

8. Transportation Improvements and Technology Applications .. 17
 Giving Opportunities for and Priority to High Occupancy Modes .. 18
 First Mile-Last Mile Connections to Transit ... 19
 Vanpool Program Support .. 20
 Shared Mobility Options .. 20
 Movement Towards Mobility on Demand ... 22

9. Marketing, Outreach, and Incentives .. 24
 Regional Marketing ... 24
 Targeted Marketing .. 25
 Digital Outreach & Social Media Marketing .. 26
 Incentives ... 27

10. Advancing Implementation ... 30
 Partnerships with Private Sector Mobility Service Providers ... 30
 Using Pilot Programs/Projects as First Steps ... 32
1. Introduction

Transportation demand management (TDM) involves a wide array of flexible and cost-effective strategies for improving regional mobility. Evolving from traditional carpool/vanpool programs of the past, TDM now encompasses a fast-growing inventory of innovations that focus on increasing travel choices. These choices include alternatives to driving alone – such as transit, ridesharing, bikesharing, and walking – as well as choices for shifting the time of travel (e.g., shifting from peak to off-peak periods), route (e.g., shifting travel to less congested routes or parking locations based on real-time information), and even whether to travel (e.g., telecommuting).

Recent and emerging technologies have created a dynamic landscape for both public and private sector TDM implementation, including shared mobility options and use of real-time travel information to support more efficient mobility choices. This fast-paced change in the market creates both challenges and opportunities for public agencies. While TDM programs have often been viewed as stand-alone programs focused on helping commuters get to work, increasingly there are opportunities to integrate TDM strategies into regional planning, project-level planning, and transportation systems management and operations (TSMO) in order to maximize community benefits and enhance transportation system performance.

This review of national best practices highlights effective strategies that have been applied in regions around the country. From an implementation perspective, the report considers both effective practices related to time-tested demand management strategies like vanpooling, as well as new and emerging strategies such as advances in shared mobility options, integration of TDM within active transportation system management, and application of technology to support “Mobility on Demand.” Examples of peer agency implementation and pilot programs are provided to illustrate effective integration of TDM into planning and operations.

This report provides a foundation for the Southwestern Pennsylvania Commission (SPC) to consider best practice approaches as part of development of its Regional TDM Action Plan.

2. Broadening the Role of TDM

Historically, TDM has focused on trip reduction through employer partnerships and promotion of ridesharing programs aimed at individual commuters in order to manage traffic congestion and improve air quality. Increasingly, best practices are broadening the role of demand management, markets, and applications.

Using TDM to Support Diverse Regional Goals

Contemporary approaches to TDM increasingly focus on supporting a wide array of goals beyond traffic management.¹ These goals may include livability, economic development, equity, and sustainability.

¹ FHWA. (n.d.) https://ops.fhwa.dot.gov/plan4ops/trans_demand.htm
access to destinations, greenhouse gas (GHG) reduction, and other community values established in regional planning processes or local policy making.

As an example, the Atlanta Regional Commission (ARC) developed its Regional Transportation Demand Management (TDM) Plan with a focus on how TDM can support goals within the region’s 2040 regional transportation plan (PLAN 2040). As one of the fastest growing metropolitan areas in the nation, the Atlanta region has seen significant growth along the urban periphery contributing to low-density land development patterns that have perpetuated the region’s auto-dependency. Recognizing that historic land use and transportation decision making have contributed to making driving alone the easiest choice for residents, and that the region’s existing TDM program was fragmented and not effectively linked to the regional planning process, the regional TDM plan sought a different way of thinking about TDM.

Using the term “TDM+”, ARC emphasized expanding the role of TDM to address goals including livability, sustainability, enhancing transit, increasing walking and biking, integrating transportation and land use planning, enhancing systems operations, economic development, mitigating climate change, and supporting healthy communities and active aging. The TDM Plan notes that not only will TDM+ help achieve transportation and air quality goals, but it also has the potential to have a significant economic impact on the region by maximizing the value of existing infrastructure and alleviating the need to invest in costly roadway and transit capacity expansions. Moreover, by reducing congestion associated with driving alone, TDM+ strategies support businesses and the economy in the Atlanta region. Such an outlook on TDM expands the focus beyond marketing and outreach programs to include strategies related to land use and urban design, parking management, and bicycle and pedestrian activity.

Beyond Commute Trips

While TDM traditionally focused on commuters and peak period congestion, demand management is increasingly playing a role in addressing a wide array of travel markets: commuting, special events, weekend recreational trips, and travelers in highway work zones. These different markets and audiences often require different strategies and mechanisms for communication.

For example, as shown below in Figure 1, when focusing on demand management in corridors, there are many different types of travelers. For instance, travelers may include daily commuters, long-distance travelers, and recreation and tourist travelers – yet these groups have very different travel concerns. Daily commuters reside locally and travel regularly to and from work, school or other local locations. Given the frequency of these local trips, they may be receptive to options like ridesharing or transit, and interested in pre-trip and en-route travel updates and information about transportation options. Conversely, recreation and tourist travelers are typically non-local travelers, who are likely less familiar with local conditions and alternatives. For these travelers, other strategies may be more appropriate, such as route diversion programs.

TDM for Freight

Demand management can be applied beyond people to address movement of goods. Freight is an increasing share of vehicles on the road, and in some sections of the country and on specific road segments, truck traffic is a significant contributor to congestion (examples include traffic around ports, multimodal terminals, and border crossings). Moreover, with the proliferation of e-commerce and next-day or same-day delivery, the number of packages being delivered has increased considerably.

A wide array of strategies to manage demand for freight may be implemented including:

- Improving rail and marine transportation infrastructure and services to make these modes more competitive with trucking;
- Organizing regional delivery systems so fewer vehicle trips are needed to distribute goods (e.g., using common carriers that consolidate loads, rather than company fleets);
- Using smaller vehicles and human-powered transport, particularly for distribution in urban areas;
- Implementing fleet management programs that reduce vehicle mileage; and
- Changing freight delivery times to off-peak time periods to reduce congestion.

New York City DOT’s (NYCDOT) Smart Truck Management Plan is a comprehensive approach to improve truck delivery efficiencies across the city’s five boroughs and to reduce freight-related impacts to the human and natural environments. To create the plan, NYCDOT convened a freight advisory group that examined curbside management, sustainability, compliance, enforcement, and land use policies related to truck freight. The agency also sought input from neighborhoods most directly affected by truck traffic through a series of community

https://ops.fhwa.dot.gov/publications/fhwahop12035/
open houses. Among other strategies, the document includes a voluntary off-hour delivery program for heavily congested areas such as Midtown Manhattan, which has the potential to significantly reduce congestion and double-parking in program areas.\(^4\)

Beyond Day-to-Day Travel Conditions: Active Demand Management

Beyond day-to-day travel conditions, the transportation system is often impacted by a range of non-recurring events, such as traffic incidents, adverse weather conditions, road closures, and work zones, which are responsible for a large portion of travel delay. Active Transportation and Demand Management (ATDM) approaches deploy information and technology on the transportation network to dynamically influence traffic flow and travel choices by time of day, mode, route, and lane/facility in response to and in anticipation of changing conditions.\(^5\) An ATDM approach involves on-going system monitoring, assessment of real-time performance, and dynamic response to this information. As actions are implemented, real-time information on how the system responds is also assessed. Under this approach, transportation system performance is continuously assessed; dynamic actions using existing tools and assets are continuously evaluated and implemented in real time to achieve performance objectives.

As part of ATDM, active demand management involves using technology to dynamically manage demand, such as by redistributing travel to less congested times of the day or routes, or reducing overall vehicle trips by influencing a mode choice.\(^6\) It includes application of a wide array of approaches to optimize the efficient utilization of transportation modes and assets, such as:

- **Dynamic ridesharing** – travelers use smart phones and other technologies to arrange a shared ride on a one-time, short-notice basis.
- **Dynamic pricing** – toll rates are adjusted in real-time to respond to changing congestion levels.
- **Predictive traveler information** – travel-time predictions are provided (via multimodal trip planning systems, 511 systems, dynamic messaging signs, etc.) to inform pre-trip and en-route travel choices.
- **Dynamic fare reduction** – transit fares are reduced in a particular corridor as congestion or delay on that corridor increases.

Active demand management is based on a fundamental understanding of traveler decisions and how best to influence them. It recognizes that travel demand is effectively addressing congestion before the decision is made on when, how, and whether to use a vehicle, while managing traffic is efficiently addressing congestion once the traveler is in the vehicle. With this new perspective, come new partners and collaborators to support a traveler’s decision making.

New York State Department of Transportation (NYSDOT) developed an ATDM framework, which identified a range of different treatments applicable to different types of urban, suburban, and corridor contexts to help support transportation planners and operators to understand the role of active demand management within transportation systems management and operations.7

3. Targeting Demand Management Strategies

While the role of TDM is expanding to broader markets and contexts, effective application of TDM involves targeting marketing, programs, and efforts to unique local contexts in order to reach different audiences.

Tailoring Approaches to Sub-Regional Context

Demand management contexts can vary widely within regions. This is especially true for Southwestern Pennsylvania, with a mix of dense employment centers, compact historic neighborhoods, suburbs, and low-density exurban and rural neighborhoods. Recognizing these different contexts is an important aspect of tailoring programs, marketing, and initiatives to meet diverse constituent needs. For instance, while TDM initiatives often focus on shifting commuters from driving alone to transit, ridesharing, bicycling, and walking in urban areas, the more limited options for transit and alternatives to driving alone means that different strategies and messages can be important to address local needs. In more rural and suburban contexts, demand management may focus more heavily on strategies such as ridesharing and telework, and be designed to support greater access to jobs for those with limited driving options.

For instance, in Upstate New York’s large urban areas, employer-based strategies focus on parking management within the urban core and on employee access in outer lying suburban and rural areas. Many manufacturing and distribution centers provide relatively low-wage jobs and therefore draw from a transit-dependent workforce, yet they are located in areas without transit service. As a result, vanpool programs are promoted using subsidies in some regions (Albany and Rochester), and carpool matching is heavily promoted in others that do not have specific subsidies (Buffalo and Syracuse).

Caltrans, the state department of transportation for California, partnered with US EPA and state housing and planning departments to develop a “Smart Mobility Framework.” The Framework, which debuted in 2010, included two concepts that sought to address the wide diversity of planning and geographic contexts for smart mobility throughout the state. The first concept

established a continuum of place types that captured varying neighborhood types, development densities, and land uses across California ranging from urban core to protected lands. The second concept builds upon the place type designations to determine “location efficiency,” which analyzes variations in community design and regional accessibility on a scale ranging from strong to weak (see Figure 3).

These two concepts provide a basis for developing context appropriate transportation and land use approaches and corresponding smart mobility priorities. For instance, in suburban parts of the state, smart mobility priorities and approaches may include transit-oriented development with managed parking and shared mobility options like carsharing and bikesharing in areas with high volume transit facilities. For rural lands, priorities may include limiting highway capacity expansions in order to avoid induced sprawl. In areas with tourism-based economies, for example, principles may include providing transportation services to visitors on weekends and holidays. In agricultural areas, implementation of smart mobility principles could include increased access for workers and agricultural logistics (e.g., suppliers and shippers). By tailoring priorities and implementation strategies to a wide range of possible transportation and land use contexts, Caltrans has provided a range of effective approaches (including demand management strategies) that jurisdictions can apply locally to support the state’s smart mobility objectives.

Programs and Initiatives Targeted to Special Populations

Contemporary TDM programs are increasingly helping transportation disadvantaged populations overcome barriers to accessing essential services like jobs and healthcare.

Limited access to goods and services can negatively impact quality of life. This is especially true for veterans with limited access to medical facilities and employment assistance. To remedy this, Rogue Valley Transportation District (RVTD), which serves the greater Jackson County, Oregon area, created the Go Vets program. This unique program, which was developed by veterans to overcome

barriers to accessing essential services, provided travel training for public transit use and education regarding other alternatives. The program also provided free bus passes for a limited period. An evaluation of this program found a 39 percent decrease in missed medical appointments and a 26 percent reduction in missing work/employment programs following its implementation. Through Go Vets, the Pedals for Patriots program also offers free bicycles to veterans (most donated by local police departments) to improve access to services and opportunities and instill a sense of independence among program participants.9

4. Local and Subarea Planning and Policy: Making Connections to Land Use and Parking

TDM can be integrated into local planning and policy through efforts that focus on development requirements and parking management strategies that strengthen the connection between the transportation system and land use. These approaches support transit-oriented development and development of bicycle and pedestrian infrastructure, as well as vehicle trip reduction measures and efforts to effectively manage parking price and supply. Examples of these practices are highlighted below.

TDM Development Requirements or Proffers

Local governments can place requirements on new development to reduce traffic generation through a variety of strategies. A TDM proffer is a voluntary commitment by a developer or landowner to mitigate the negative impacts of a development on its surroundings. In Fairfax County, Virginia, site plan review staff draft proffer agreements as a part of the development approval process. Proffer agreements establish a general trip reduction goal for a development and require developers to make financial contributions to a dedicated fund for them to implement TDM strategies. Developers are required to submit annual reports on the TDM implementation and observed trip reduction performance.10

While some state and local trip reduction ordinances apply to existing employers, other ordinances and TDM programs have been used to integrate TDM into the development approval process in municipalities such as Arlington County, VA (1990); Cambridge, MA (1992); Contra Costa County, CA (1992); Alexandria, VA (1997); Montgomery County, MD (2002); Rockville, MD (2012); Buffalo, NY (2017); and San Francisco, CA (2017). These ordinances typically require new developments above a certain size to estimate travel demand generated, set trip reduction targets, commit to implementing TDM strategies, and report on performance.

Eliminating Parking Minimums

The Buffalo Green Code was the first city zoning ordinance adopted in the U.S to eliminate parking minimums citywide.11 The code requires most new developments (over 5,000 sf) and major renovations (over 50,000 sf) to prepare TDM plans committing to strategies that will reduce estimated vehicle trips and parking demand by 10-20% over two years of implementation. These requirements are detailed in the TDM Policy Guide, which assigns trip reduction credits to the following categories:12

- Share programs (carsharing and bikesharing)
- Promotion and outreach
- Employee incentive programs (guaranteed ride home, “live near your work” programs, transit pass discounts, alternative/flexible work schedules)
- Enhanced design amenities (roadway improvements, bicycle facilities, transit facilities)
- High occupancy (shuttles, vanpool, carpool)
- Parking management (shared parking, parking cash-out, unbundled parking)
- TDM management (TDM coordinator, membership in a TMA).

These TDM plans must be approved by the City’s Planning Board as a part of major site plan review. Implementation status reports must be submitted to the City’s Zoning Board Administrator after six months of occupancy and then every two years thereafter. The Green Code also establishes minimum bicycle parking requirements for new developments that address both short- and long-term bike storage needs and vary by land use and development size. Developments can only receive trip reduction credit for bicycle parking provided above the minimum amount required.

Dynamic Curbside Pricing

Dynamic curbside pricing manages demand for street parking based on time of day, parking duration, and utilization in the surrounding area. With technology applications, cities can map their curb regulations and leverage other data sets such as speed, parking, transit stops, street cleaning schedules, and for-hire vehicle pick-up and drop-off data to better understand curb use. Seattle DOT and Ford have partnered on a pilot project to map this data using a secure data commons (SharedStreets) to support dynamic curbside pricing in the future.

While this particular technology is still being piloted, the benefits of dynamic curbside pricing have been proven: in San Francisco, the SFpark dynamic parking pricing pilot program ran from 2011-2013 and yielded a 30% reduction in VMT and 43% reduction in parking search times. In 2017, the San Francisco Municipal Parking Transportation Agency (SFMTA) committed to a citywide demand-responsive pricing program on 28,000 curbside meters and all metered off-street lots.\(^{13}\)

Parking Cash Out and Commuter Benefits Ordinances

The price of parking strongly influences whether or not a commuter drives to work. Parking cash out is a commuter benefit in which an employer offers employees the option to accept taxable cash income instead of a free or subsidized parking space at work. The idea behind parking cash out is simple: given a choice of cash or a parking space, many people would prefer to receive cash. Parking cash out may be voluntary or mandated by policy.

Since 1992, the State of California’s Health and Safety Code has required employers with more than 50 employees in any nonattainment area to offer a parking cash out program if they subsidize employee parking.\(^{14}\) In a study of 37 employers in Los Angeles, the recorded drive alone rate fell from 76 percent before employers offered cash out to 63 percent afterward. The number of daily vehicle trips to work fell by 11 percent, and total vehicle travel to work fell by 652 VMT a year per employee.\(^{15}\) In Rhode Island, employers with more than 50 employees within one quarter mile of public transit service must offer a parking cash out program if they subsidize employee parking.\(^{16}\) While existing policies requiring parking cash-out are largely statewide in scope, they have strong site-level impacts on vehicle trip reduction for the employers that are subject to their requirements.

Commuter benefits ordinances require that employers exceeding a certain size offer commuter benefit programs to workers. These programs help to incentivize travel by transit, vanpool, and other alternative modes by lowering commute costs for these trips through employer subsidies or pre-tax benefits. Mandatory commuter benefit ordinances have been enacted in cities including Seattle, Washington, DC, the San Francisco Bay Area, and New York City. San Francisco’s ordinance, for example, requires that employers with at least one location in San Francisco who also employ 20 or more employees nationwide provide one of the following benefits:\(^{17}\)

- Up to $260/month in pre-tax deductions for transit or vanpool expenses
- A monthly employer subsidy for transit or vanpool trip costs equivalent to the price of a monthly regional transit pass
- Employer-sponsored bus or van service to and from the place of work.

\(^{16}\) RI Gen L § 37-5-7.1 (2014)

Congestion Pricing

Congestion pricing tolls motorists who enter congested central city areas in order to curb excess demand. Congestion pricing was first implemented in Singapore in the 1970s and has since been successfully adopted in cities including London, Stockholm, and Milan. Following implementation of congestion pricing in London, the number of cars entering the cordoned area in Central London declined by 39 percent from 2002 – 2014 while the number of bicyclists travelling within the same zone increased by 210 percent within a similar time period. However, recent growth in ridesourcing trips from transportation network companies like Uber have offset some of these gains and led lawmakers to consider removing pricing exemptions for these drivers.18

Until recently, congestion pricing efforts in the US have faced considerable political hurdles. However, in March 2019 New York lawmakers approved a plan to implement congestion charging in the most congested areas of Manhattan, making it the first city in the nation to do so. The toll revenues collected through the pricing scheme will go towards improving the city’s underfunded subway system. Cities like San Francisco, Los Angeles, Philadelphia, and Seattle are also considering implementing congestion pricing to combat growing congestion and fund mass transit systems. However, concerns remain that congestion pricing imposes a regressive tax on poor drivers that lack access to transit and that demand may shift to adjacent areas. In response, New York lawmakers are considering exempting certain groups including people with disabilities, low income people living within the congestion zone, and motorcyclists.19

5. Integrating TDM in Regional Planning and Processes

Metropolitan Planning Organizations (MPOs) are charged with carrying out a continuous, comprehensive, and coordinated transportation planning process. While traditionally the transportation planning process has focused on planning for transportation infrastructure investments and services (e.g., highways, transit services, and bicycle/pedestrian infrastructure), increasingly MPOs have recognized the important role that TDM can play in supporting regional goals and performance outcomes. Examples of effective integration of TDM in regional plans/processes are highlighted below. For considerable guidance and examples, readers are encouraged to reference Federal Highway Administration’s (FHWA) publication Integrating Demand Management into the Transportation Planning Process: a Desk Reference.

Developing Regional Goals and Performance Measures that Support Multimodal Choices

Integration of TDM into the regional planning process should be considered alongside the shift to an objectives-driven, performance-based approach to transportation planning. Such an

approach involves developing performance measures and targets that can be used to help support prioritization of projects, programs, and activities. Specifically, the Metropolitan Transportation Plan can emphasize the important role of mobility options through goals and objectives, as well as performance measures that focus on issues such as non-single occupant vehicle (SOV) mode shares and vehicle miles traveled (VMT).

St. Louis’ regional MPO, the East-West Gateway Council of Governments, developed its Long Range Transportation Plan, Connected2045, around EWG’s 10 Guiding Principles. Focus groups, interviews, and group meetings directed the principles to encourage a broader understanding of the connections to transportation and how transportation can impact economic development, the environment, and quality of life. These goals serve as a foundation of the region’s performance management framework in the long-range plan and Transportation Improvement Program. The goals to “Support Public Transportation” and “Provide More Transportation Choices” emphasize the region’s priority of multimodal improvements by encouraging investment in bicycle and pedestrian facilities as well as public transportation. The framework performance measures that align with these principles include transit ridership numbers, transit access measure, mode split, and vehicle miles traveled per capita.

Integrating TDM in the Congestion Management Process

Beyond the region’s goals or priorities in the long-range transportation plan, TDM can be integrated throughout a wide array of transportation plans, processes, and program effort. MPOs representing large urbanized areas with over 200,000 population (such as SPC) must implement a Congestion Management Process (CMP) that is designed as a systematic and regionally-accepted approach for managing congestion that provides accurate, up-to-date information on transportation system performance and assesses alternative strategies for congestion management. The CMP must include congestion management performance measures and identify travel demand reduction strategies. Moreover, in regions designated as ozone or carbon monoxide non-attainment areas, Federal law prohibits projects that result in a significant increase in carrying capacity for SOVs from being programmed in these areas unless the project is addressed in the region’s CMP and includes an analysis of reasonable travel demand reduction and operational management strategies.20

The CMP can support TDM in a variety of ways. Most notably, the CMP must include congestion performance measures. Rather than using measures of vehicle hours of delay or roadway level of service, which tend to focus strategies on highway capacity, performance measures such as person hours of travel delay per capita help to support identification of strategies that optimize person movement (e.g., transit, HOV). Other examples of performance measures that support multimodal options include measures associated with VMT reduction, non-SOV mode share, and reliability. Now, Federal rules require measures of peak hour excessive delay and percent non-SOV travel to be reported at the urbanized area level, with targets developed for each. Moreover, the CMP can emphasize the importance of exploring TDM strategies before capacity enhancement strategies.

20 23 CFR § 450.322
The Capital District Transportation Committee (CDTC), the designated MPO for the Albany-Schenectady-Troy (New York) metropolitan area, has emphasized within its CMPs principles to:

- Support growth in economic activity and maintain the quality of life in the Capital District by limiting the amount of "excess" delay encountered in the movement of people, goods and services.
- Make contributions to the avoidance and mitigation of congestion on all modes by implementing demand management programs before performing capacity enhancements.

Because the CMP supports the metropolitan transportation plan’s goals in their entirety, CDTC is able to ensure that these processes support the region’s goals broadly to enhance community livability and quality of life.

Addressing TDM in Programming / Project Prioritization

Goals and objectives related to TDM, as well as performance measures that support non-SOV options and person movement rather than vehicle movement, can be integrated into project prioritization and programming criteria. The North Jersey Transportation Planning Authority (NJTPA), the MPO for the 13-county northern New Jersey region, has a Transportation Improvement Program (TIP) prioritization process with two key steps: 1) Application of Project Prioritization Criteria; and 2) Application of Additional Priority Factors. Project prioritization criteria were developed with input from county engineers and planners, representatives from the environmental community, business groups, and organized labor. Projects are scored based upon how well their goals align with the 2040 NJTPA Long Range Transportation plan. Other factors such as feasibility of project delivery and funding availability and project timing also influence project scoring. These are determined by consultants and NJTPA staff, professionals, and elected officials from subregions, NJDOT, and NJ Transit staff. NJTPA also provides opportunities for public input on the scoring. Using this framework, which scores TDM initiatives highly for their ability to improve the regional air quality, NJTPA’s FY 2018 – 2021 TIP allocates budget for the region’s Transportation Management Associations, park-and-rides in areas of high demand, and ridematching activities.

6. Corridor-Focused Initiatives / Integrated Corridor Management

Beyond the region or business district, transportation agencies are increasingly looking at opportunities to integrate TDM into corridor-based initiatives, such as integrated corridor management (ICM) planning. ICM applies strategies to reduce congestion and optimize mobility on corridors, which are treated as complete systems across facilities, modes, and operating agencies (including state and local departments of transportation, MPOs, transit agencies, law enforcement, and first responders). ICM requires significant investments in technology and infrastructure; those investments are most effective when they leverage accommodations for

shared and active modes of transportation such as high occupancy vehicle lanes, transit signal priority, and bicycle and pedestrian facilities.

The Dallas ICM consists of a 28-mile corridor of US-75 with continuous frontage roads, managed HOV lanes, a bus network, a light rail network, park and ride lots, 900 traffic signals, regional advanced traveler information system (including a regional transit schedule and planner), as well as numerous traffic management centers. The regional TDM program operated by the North Central Texas Council of Governments highlights use of the HOV lanes among the benefits of ridesharing. The program began in October 2006 and was fully operational in April 2013. Through the Dallas ICM processes, over 400 response plans have been developed and approved, with more being written and revised based on experience. These pre-approved response plans are provided to partner agencies both in real-time (online) during implementation, as well as offline for follow-up evaluation and adjustment. Mobility performance results indicate that the ICM generates expected annual savings of 22,004 person hours in peak directions.

The San Diego ICM covers 21 miles of I-15. It includes managed lanes and four bus rapid transit routes that operate in the managed lanes, which feature dynamic variable pricing to help manage traffic flow. Transit, carpools, and vanpools use the lane for free at any time, and the toll ranges from $0.50 to $8 for SOVs based on traffic flow. Other TDM strategies include transit signal priority (discussed further in this report), a new transit stop, and studies to enhance transit, walking, and biking facilities.

The regional TDM program iCommute operated by the San Diego Association of Governments (SANDAG) highlights the benefits to carpools,

vanpools, and transit riders in the I-15 managed lanes. The ICM became operational in March 2013, while the incident/event response functions became operational in 2015. The ICM’s Decision Support System assesses traffic conditions based on incoming monitoring data from traffic signal systems, ramp metering, transit, express lanes, and traveler information. The ICM system forecasts conditions up to 30 minutes in the future with microsimulation, then develops proactive response plans for operations personnel to consider. Forty alternative route signs were installed in April 2016 on surface streets along I-15 and provide coordinated detour messaging. In the event of a major freeway incident, these signs direct motorists off the freeway to avoid delays, and alternative route signs will guide them through surface streets and back on the freeway as soon as possible.

In the Philadelphia-area I-76 ICM pilot, PennDOT is leading ICM along a 25-mile segment of I-76 and adjacent corridors, which connect Philadelphia with its northwest suburbs. These corridors experience frequent congestion and average daily traffic volumes of over 200,000. Program areas of the ICM include variable speed limit signs, queue detection/warning, dynamic junction, shoulder, lane use controls, adaptive ramp metering, multimodal improvements to transit stations and a bike/ped trail, as well as traffic signal management. Most elements of the ICM are forthcoming in the alternatives analysis phase, though some are under construction and are anticipated to go live in Spring 2019. The State will determine whether this pilot is worthy of expansion by 2022.

7. Integrating TDM into On-Going System Management and Operations

The increased emphasis on maximizing the efficiency and reliability of the highway system has led some states and regions to integrate TDM as part of on-going transportation system management and operations (TSMO) in order to improve system performance. The overlapping objectives of demand management and system management make these strategies natural complements. By integrating TDM in traveler information, event/incident management, and construction projects, traffic management center (TMC) staff and other operations personnel can influence shifts to different routes, travel times, and alternate modes to the overall benefit of the travelling public.

Integrating TDM in Traveler Information

Advanced traveler information is fundamentally a demand management strategy to help travelers learn of bottlenecks, slowdowns, and incidents, as well as travel options so that they

might avoid them by traveling a different route, at a different time, or by a different mode than driving if available, thus decreasing congestion.

Common types of traveler information include:

- Alternate Routes
- Congestion Information
- Live Traffic Cameras
- Parking availability
- Road work/construction zones
- Special events
- Traffic incident information
- Travel times
- Weather information

The New York State Department of Transportation’s commuter and traveler services program, 511NY Rideshare, for instance, is designed to provide New Yorkers with information on current traffic conditions, weather alerts, Park and Ride lots, and available alternative modes of transportation for their commute. A notable traveler information feature is the online Park and Ride lot database. When a user clicks a specific lot, they are provided with features including total number of parking spaces, bike rack availability, parking permit requirements and fees, directions to the lot via personal vehicle or public transit, and a digital map of the parking lot and surrounding area. Furthermore, companies who partner with 511NYRideshare have the option to host a curated portal on their company intranet, created by a 511NYRideshare team member, where employees are able to access traffic and commute information catered specifically to their work location.

TDM for Incidents, Emergency Events, and Road Weather Management

While traffic incident and road weather management has traditionally focused on providing information on traffic conditions, successful operations to maintain mobility can integrate demand management strategies. For instance, telework programs can be an important strategy for emergency preparedness. In the wake of Hurricane Harvey in Houston and Hurricane Maria in Puerto Rico, federal agencies in affected areas were able to continue operations during office closures because they had employees who were prepared to telework.28 Businesses and employers can also implement strategies specifically designed for emergency operations. For instance, the Walt Disney Company has agreements with local taxi companies to ensure that employees have priority access to the service fleet to get to and from work in the event of an emergency. Agreements with private charter bus companies are also in place for special events, which could apply to emergencies if needed.

NYSDOT’s "Match Me in Emergencies" program was developed during Hurricane Sandy. It is ideal for transit users who need a way to work when transit is down from flooding, power

outages, or other disruptions. Also, NYSDOT’s created a landing page for the emergency Penn Station Amtrak maintenance that shut down 1/4 of commuter train tracks, where NYSDOT put together a portal and landing page, with emergency park and ride lots and updates on capacity during morning rush.

Special Events Management

TDM can play an important role in planned special events management. While this is now common for major sporting events and venues in urban locations, demand management strategies can also play an important role in suburban and rural communities that host special events such as festivals that attract large crowds. Coordination may involve transportation agencies, transit agencies, law enforcement, special event promoters, venue management teams, parking facility operators, media, and any sectors of the public affected by event traffic. For instance, for less frequent events at venues without transit infrastructure, transit shuttle service may be considered. This service could use existing park-and-ride lots or new ones could be negotiated at public or private parking facilities, including retailers with large under-utilized parking lots. Shuttle stops or dedicated transit lanes can service the venue. For venues with year-round events, permanent transit infrastructure (e.g. bus routes and stops) may be considered. Service frequency may need to be increased before and after an event to handle demand.

The Tucson Festival of Books is a free annual book fair that draws nearly 140,000 attendees to the University of Arizona campus each March. Due to the event’s popularity, traffic congestion and parking scarcity have become formidable issues in and around campus. To address these logistical challenges, the University partnered with a vendor (Metropia) to provide festival navigation assistance for drivers and encourage carpooling. The vendor’s mobile app directed drivers to designated parking lots while factoring for event-specific road closures. Further, the app offered rewards to festival attendees who opted to carpool using a built-in matching function. As a result of this partnership, ten percent of all trips that used the app included carpoolers. Additionally, festival organizers were able to use app data for insights regarding peak festival arrival and departure times, which allowed them to better allocate event staffing to accommodate changing periods of travel demand.29

TDM for Work Zone Management and Temporary System Disruptions

TDM strategies can play an important role in highway and transit construction or rehabilitation projects that temporarily reduce roadway capacity or cause disruptions to existing services. Strategies may include implementation of new temporary transit services, incentives, coordination with employers, and communications to encourage alternative options for travelers to avoid the area (e.g., detours) or switch to non-driving options (e.g., public transit, carpooling, ridesourcing), or alternative trip times.

In response to a planned partial shutdown of Metro subway service in parts of Northern Virginia in 2019, Virginia DOT (VDOT) has developed a comprehensive plan that includes permitting buses to operate on the shoulder of the Capital Beltway’s Outer Loop, and altering pavement markings and signal timing around the Huntington Metro station to support increased person throughput with buses. Moreover, the City of Alexandria will add extra local buses, expanded trolley service hours, more bikesharing service, and increase rush-hour water taxi trips between Washington, DC and Alexandria to manage travel demand during the construction period. VDOT is investing a total of $3.6 million to support the cost of these services.30

In Seattle, Washington, Seattle DOT funded a Rideshare to Transit pilot from December 2018 to February 2019 during closure of the Alaskan Way Viaduct. The pilot offered reduced fares with ridesourcing companies including Uber, Lyft, and ReachNow to match the price of adult transit tickets to and from particular transit hubs in the area to ease congestion between construction closures in order to encourage transit ridership. Additionally, Uber’s dockless pedal assist bikeshare company (JUMP) waived the $1 fees to unlock the bikes and increased the number of bikes for the duration of the closures and construction projects.31

The Colorado DOT (CDOT) employed TDM as part of the reconstruction of I-25/225 in the Denver region, which included the building of a new light rail segment. A public information campaign was implemented to increase the use of transit, vanpooling, and carpooling utilizing a temporary HOV lane. CDOT project managers cited the existence of TDM as reducing their overall risk on the project and providing travelers with enhanced options. Market research studies found that travelers appreciated these options, even those who did not use them.32

8. Transportation Improvements and Technology Applications

A foundation for effectively managing travel demand is having the options available to support a wide array of travel choices. Transportation investments can support options such as enhancing transit service frequency, coverage, and reliability, as well as efforts to encourage ridesharing.

Moreover, the growing ubiquity of smartphones and the proliferation of shared mobility providers are creating new opportunities for demand management. Together, these shared modes offer a range of on-demand alternatives with the potential to reduce SOV reliance and improve first mile-last mile connections to transit. Emerging innovations like Mobility on Demand, which promises a seamless fusion of multimodal trip planning/payment and policy levers, may have significant influence on personal travel decisions and further active demand management potential.

Giving Opportunities for and Priority to High Occupancy Modes

Transportation system improvements, including operational improvements, can be used to encourage the use of high-occupancy and shared modes.

Making Transit Faster and More Reliable (e.g., Transit Signal Priority)

Transit signal priority (TSP) gives preferential treatment to transit vehicles at signalized intersections to improve person throughput. Passive TSP strategies include assigning signal priority to roads with high volumes of transit vehicles or coordinating signal timing at average transit vehicle speeds. Conversely, active TSP uses in-vehicle transponders or other communications devices to detect the presence of an approaching vehicle and time its arrival to give an early green signal or to hold an existing one.33

To improve bus performance and reliability, and to reduce motorist queuing, the District DOT (DDOT) conducted a transit priority planning study on 16th Street NW in Washington, DC – a transit priority corridor that serves more than 20,000 bus riders on weekdays. In addition to TSP strategies, study alternatives included dedicated transit lanes, turn restrictions, and off-board fare payment. DDOT’s preferred alternative includes active TSP for 33 signals along the corridor, which are activated when one of the corridor’s many buses falls behind schedule. At one of the corridor’s busiest intersections, DDOT installed a “queue jumper” – a dedicated bus signal that gives transit vehicles a head start that allows them to pull ahead of other queued vehicles.34

Enhancing Park and Ride Opportunities

Park and Ride facilities help travelers, particularly in suburban locations with lower densities, to join carpools or access transit. A regional or corridor strategy can help to support use of park and rides, not only through their siting and location but also associated marketing. For instance, to encourage choice riders to commute by bus, the Central New York Regional Transportation Authority (CENTRO) – the public transportation provider for the greater Syracuse area – conducted a regional park and ride study resulting in a network of 12 free Park-N-Rides where users can catch a bus. Additionally, CENTRO’s Park-N-Ride website also provides an integrated transit trip planner and fare info for buses. Some agencies have developed partnerships with private land owners or developers to set aside space for park and ride users.

34 DDOT. (n.d.) https://ddot.dc.gov/page/16th-street-nw-transit-priority-planning-study
Seamless Transit Fare Payment

TriMet, the transit provider for the bistate Portland, Oregon region, adopted an open architecture regional fare payment system called Hop Fastpass. Hop Fastpass uses a contactless fare card to provide interconnectivity between TriMet’s bus, light rail and commuter rail systems. To reduce transfer barriers between these modes, TriMet instituted a policy that uses Hop Fastpass to charge riders only the difference between fares if they transfer from a lower priced mode to a higher priced one (as opposed to charging them for a new trip). Further, TriMet adopted a fare capping policy that eliminates upfront monthly and daily pass costs and ensures riders will never exceed the equivalent value of these passes regardless of how many trips they take.

First Mile-Last Mile Connections to Transit

Getting travelers to high-capacity fixed route transit can be a challenge, particularly in suburban areas, where jobs or housing may be located far from major arterial roadways. The examples below illustrate strategies for improving connections to transit.

Planning and Guidance for First Mile-Last Mile Improvements

Los Angeles County is making significant improvements to its public transportation network to encourage alternatives to driving alone. Los Angeles County Metropolitan Transportation Authority’s (LA Metro) First Last Mile Strategic Plan provides guidelines to implement an infrastructure improvement strategy. This strategy will facilitate safe and easy access to the improved rail network for the nearly eight million residents who will live within three miles of a rail station following completion of transit network improvements.

Microtransit

Microtransit has also shown promise to improve first mile-last mile transit connections. In Kent, England, for example, Arriva Bus UK uses Via’s real-time ridesharing technology to provide demand responsive transit service that helps connect workers at a large employment center to a nearby high-speed rail station that would otherwise be inaccessible. Similar first mile-last mile transit connectivity efforts are currently being piloted across the US as part of FTA’s Mobility on Demand Sandbox initiative.

Using Transportation Big Data to Pinpoint Multimodal Connectivity Gaps

Big data analytics platforms capture trillions of geospatial data points from Bluetooth signals, GPS devices, and a variety of other digital sources. These data sources are then deidentified and algorithmically processed to identify granular travel patterns and to provide real-time travel info (predictive analytics further extend the capabilities of these massive datasets). Big datasets can also be used to pinpoint short and circuitous trips in order to target TDM solutions accordingly. In Northern Virginia, for example, Virginia DOT planners used transportation big data to analyze hundreds of road segments to identify problems with pedestrian access to a Metro station. With this knowledge, planners proposed improved sidewalks and a pedestrian
bridge to discourage short trips that could contribute to parking scarcity and congestion around
the transit station.35

Vanpool Program Support

Vanpools typically carry between seven to fifteen passengers, shuttling commuters between
common pick-up locations like a park-n-ride lot and the workplace. The vans used in these
programs are often supplied by an employer or agency, or otherwise subsidized to offset lease
costs. Vanpools are best suited for commutes greater than 15-miles each way and for larger
employers whose workers adhere to similar schedules and who arrive at a single centralized
location. SPC’s [CommuterInfo](#) platform provides a listing of dozens of vanpools throughout the
region along with their origins and destinations, arrival and departure times, and the number of
open seats for each van. The SPC provides a subsidy of $400 per vanpool per month for all
vanpools in the region except for those serving federal employers, which provide employees
with a fare subsidy of up to $265 per employee per month. This is a best practice, and is similar
to some programs in other regions.

For instance, the San Diego Association of Governments’ (SANDAG) [iCommute program](#)
matches vanpool riders and provides a subsidy of up to $400 per month to offset lease costs for
vans. In 2018, there were over 700 active vanpools in this program. Illumina, a biotechnology
company headquartered in San Diego, further incentivizes vanpool use through the iCommute
program by providing each participating employee with $130 per month for expenses. Illumina’s
program grew to 18 vanpools in 2018.36 The Virginia Vanpool Assistance Program, sponsored
by the Virginia Department of Rail and Public Transportation provides temporary funding for
vanpools having trouble filling all of their seats. There are two different programs: the VanStart
Program, which funds empty seats during the critical start-up phase of new vanpools; and the
VanSave Program, which is for existing vanpools that are experiencing problems in their
passenger levels due to the loss of riders.

Shared Mobility Options

Shared mobility options include recent innovations like ridesourcing, scooter/bike sharing,
microtransit, and other emerging modes. These newer options complement shared mobility
modes like carsharing, which have existed since the 1990s, and are distinguished from other
shared modes like public transit by integration of app-based mobile tracking and by their novel
service and their operational and business models, which are generally profit-driven. Society of
Automotive Engineers’ [J3163](#) provides a standardized taxonomy and definitions for shared
mobility options; under this standard, shared mobility is defined as “the shared use of a vehicle,
motorcycle, scooter, bicycle or other travel mode; it provides users with short-term access to a
travel mode on an as-needed basis.” Given the greater role that shared mobility options are
playing, and have the potential to play, in urban and suburban areas, public agencies
increasingly have a role to play in enhancing opportunities for shared mobility.

alternatives-to-driving-alone
Planning and Guidance for Shared Mobility Implementation

Seattle DOT recognized a need to leverage the benefits of new mobility options while prioritizing the city’s core transportation system principles – safety, equity, affordability, and sustainability. To further this goal, the agency created the New Mobility Playbook, which provides a set of flexible plays, strategies, and policies addressing a wide gamut of shared mobility considerations from procurement to data management to broad societal implications of transportation technologies (labor market impacts, for example). The Playbook provides both strategic and tactical recommendations like the development of a microtransit policy framework and a pilot to assess its ability to bridge the first mile-last mile gap.

Dedicating Curb Space for Shared Mobility Options

Municipalities can support carsharing and other shared modes by providing dedicated both on-street parking spots and spots in park-and-ride lots, as well as designated space for pickups. Portland, OR allocates on-street parking to carsharing providers through a bidding system. Austin allows carsharing vehicles to use on-street parking free of charge even during active parking meter hours. New York City recently launched a two-year pilot that has reserved both on-street and municipal lot spaces for carshare vehicles.

Bikesharing, Scooter Sharing, and Other Options

In September 2017, District DOT (DDOT) launched one of the nation’s first dockless vehicle demonstrations, in which they permitted select private service providers to operate dockless bikesharing and scooter sharing vehicles within the public right-of-way for a limited time period. The demonstration program’s goal was to see if these new services could encourage shifts to active transportation modes and to extend the availability of these active modes in underserved areas. Following the December 2018 release of DDOT’s Dockless Vehicle Sharing Demonstration Phase I Evaluation, the agency committed to a “broad but incremental expansion” of the District’s dockless vehicle sharing program. DDOT’s 2019 Dockless Vehicle Sharing Program currently provides 10 vendor permits allowing up to 6,000 dockless vehicles. If each of the selected vendors meet the District’s performance requirements (including equity, ridership, parking, safety and data reporting) the program could allow as many as 16,800 vehicles by the end of 2019. Similar tests of deployment and regulation of dockless vehicles have been followed by San Francisco, Santa Monica, and Portland, Oregon.

Smartphone Applications to Support Carpooling

Carpooling apps are using real-time data and behavioral insights from other tech sectors like social media to improve matching, verification, and cost sharing. For example, the Sluglines app has helped to provide improved traveler and ride matching information for the

Washington, DC metro area’s informal “slugging” system, where drivers pick-up passengers going in the same direction at established points in order to take advantage of HOV lanes during rush hour commutes. Waze Carpool uses an interface that allows users to select prospective ride matches based on photos, profiles, and ratings. The app also allows users to filter based on same-gender and coworkers only. Further, the app functions as a digital wallet that allows drivers to charge riders at a cap of 54 cents per mile (the IRS mileage reimbursement rate). Waze Carpool has worked with MTC in the Bay Area to further its TDM and environmental goals. Waze Carpool has also worked with large employers like Roche and Amazon to provide solutions to reduce parking demand and promote worker retention in transit deserts.38

Movement Towards Mobility on Demand

Per the USDOT’s vision, Mobility on Demand (MOD) is “an innovative, user-focused approach which leverages emerging mobility services, integrated transit networks and operations, real-time data, connected travelers, and cooperative Intelligent Transportation Systems (ITS) to allow for a more traveler-centric, transportation system-of-systems approach, providing improved mobility options to all travelers and users of the system in an efficient and safe manner.”39 The vision for MOD overlaps substantially with the vision for Mobility as a Service (MaaS), a term used more frequently outside the United States. Both concepts seek to integrate trip planning and booking, real-time information, and fare payment into a single user interface that provides seamless connections between shared, on-demand passenger modes. Modes connected by MOD include: public transit, ridesourcing, carsharing, microtransit/shuttle services, ridesharing, bikesharing/scooter sharing, and other emerging innovations in shared mobility.

Fusion of Multimodal Trip Planning, Booking, and Fare Payment

LA Metro recently announced interoperability between transit and Metro Bike Share using the agency’s contactless regional Transit Access Pass (TAP) card. With this option, transit riders can book, pay for, and unlock a Metro Bike Share by simply swiping their card. LA Metro is also working to integrate fare payment with private sector service providers like Via as part of the USDOT MOD Sanbox grant.40 Similarly, Chicago Transit Authority (CTA) is integrating Chicago’s Divvy bikeshare system with the CTA app to allow users to book and pay for Divvy trips. Further, CTA recently announced that iPhone users will be able to pay transit fares from their devices using Apple Pay.41

Lyft has added real-time transit feeds to its app for Washington, DC and other select cities. Uber and Lyft have also added scooter sharing and bike sharing to their apps where they have

acquired these services. In January 2019, Denver’s Regional Transit District (RTD) announced a partnership with Masabi and Uber to become the first transit agency in the nation to offer the ability to purchase transit mobile tickets using a ridesourcing app. Using a new “Transit” option in the Uber app, Uber riders in Denver will soon be able to plan, book and pay for journeys that incorporate both public transit trips and Uber ridesourcing trips using just their smartphone.42

Figure 11. Integration of Denver RTD transit ticket booking and fare payment in the Uber app. Source: Masabi.

Advanced MOD to Actively Manage Local Travel Demand

Despite the growing ubiquity of travel data, the availability of shared mobility data has been limited due to privacy concerns and the desire to protect industry trade secrets. This is especially true for ridesourcing data. However, some cities like Washington, DC and Seattle are beginning to pilot systems that would allow them to use shared mobility service provider data to actively manage demand at a granular level. These cities have partnered with SharedStreets, a digital commons that ingests and anonymizes proprietary data from transportation network companies and other shared mobility service providers to identify aggregate traffic and travel trends in the data including for-hire vehicle speeds and pick-ups and drop-offs using a standard linear referencing system. Figure 12 provides an example of one such application at Washington, DC’s Union Station. With these insights, agencies can begin to lay the foundation for dynamic curb pricing and other strategies to actively manage travel demand on urban streets. MOD data and application programming interface (API) standardization efforts like LA Metro’s Mobility Data Specification will further support ingestion and analysis of real-time mobility service provider data to further mobility management potential.

9. Marketing, Outreach, and Incentives

Marketing and outreach are essential to raise awareness of travel options and promote the benefits of shared and active modes of transportation. A key audience is employers because of the powerful role they play in how employees choose to commute to work, as well as commuters themselves. However, as noted earlier, there may be several different audience segments.

Regional Marketing

Regional outreach and marketing are major components of most TDM programs, and these activities typically include a combination of outreach to employers, commuters, and the general public. Examples include events with employers such onsite lunch n’ learn presentations, and can also included customized support such as development of employee ZIP Code maps that may help to identify employees who could join rides or create vanpools. The 511NY Rideshare Program includes digital outreach by working with a company to share information via the company’s intranet or email system to educate employees about transportation options and encourage them to use the program’s online tools and customer service staff to find a carpool, vanpool, bike buddy, transit routes, and other benefits such as Guaranteed Ride Home. Standardized fliers are customized for onsite events and rewards campaigns with dates and other details, as well as the company logo, such as the flyer shown in Figure 13.
Employer Outreach

Due to a greater focus being on outreach to employers, in order to then market the program to the larger population of employees, a specific focus is placed on a company’s culture, physical location, and corporate priorities when strategically developing messages that will resonate successfully both with the employer’s management team and with employees as users. Messaging can be tailored to address sustainability goals, wellness programs, issues with parking and traffic congestion, or employee recruitment and retention. The 511NY Rideshare region outreach team uses the S3 Systematic Sales Strategies to contact employers, set up meetings, get leads for onsite events, attend events, register new 511NY Rideshare members (commuters), which translates to carpools/vanpools formed and VMT reduced, the ultimate measure of success for the program.

Emphasizing Environmental Benefits

511NYRideshare’s sister program, Clean Air New York, has proven to elicit greater participation from companies with sustainability goals to adopt TDM programs and benefits, as it can provide that company a designation of being a “Clean Air Champion” if certain criteria are fulfilled. When engaging employers, the outreach teams have found this program to be a catalyst for partnership because eco-friendly status is increasingly desirable for many employers and institutions.

Marketing Guaranteed Ride Home and Commuter Benefit Programs

For communities with significant public transit and ridesharing options, marketing commuter benefit programs and Guaranteed Ride Home yields greater interest and engagement from commuters because these benefits add value to their everyday routine. The Metropolitan Washington Council of Governments’ Commuter Connection Program focuses considerable regional marketing efforts on the GRH program due to surveys suggesting that the program addresses a key concern about ridesharing and transit use.

Targeted Marketing

Within TDM programs that cover large geographies with subarea variation, a regional marketing strategy with customizable collateral and outreach teams that serve specific subareas helps to build relationships with employers and stakeholders. Targeted marketing to commuters and employers on select corridors and bottlenecks has been used to address recurring congestion and to mitigate the impacts of work zones.

Oregon DOT’s statewide TDM program Transportation Options is moving towards a corridor-based marketing and outreach approach to mitigate the impacts of construction projects and reduce recurring congestion. Marketing tactics include a mix of traditional and digital (targeted emails and Facebook ads), while the outreach strategy has been to target employers’ human resources and facilities staff with the message “here’s how we can help.”
Outreach is delivered across the state by nine local Transportation Options partners that include transit agencies, council of governments, and nonprofits.

For example, an upcoming construction project on I-5 will close several travel lanes between Woodburn and Salem, and there will be a marketing campaign to get people to carpool and drive more during off-peak times. Another example is an exit interchange in Southern Oregon that was rebuilt five years ago and is already backing up onto the freeway travel lane for 15 minutes in the morning. ODOT is supporting the local Transportation Options provider in delivering a marketing campaign to change commute habits in the corridor to try and spread peak traffic and prevent back-ups. This approach is also bringing other parts of DOT along to engage ODOT district managers and project delivery staff, so that the next time congestion issues arise, ODOT call their local Transportation Options partner to recognize the TDM solution in-house while building relationships at the local level.

Digital Outreach & Social Media Marketing

As Americans continue to spend more time online, digital outreach and social media marketing have proven to be cost-effective strategies to direct users to TDM program websites and registration. Social media advertising provides the additional benefit of targeting ads to users based on demographics, geography, and other characteristics. It also provides agencies with a venue to interact with travelers directly as well as allows user-to-user exchanges of traveler information.

The 511NYRideshare program utilizes digital outreach in multiple ways. One digital outreach practice being explored by 511NYRideshare consists of responding to Craigslist posts for carpool partners, telling them what their options are in the 511NYRideshare system and asking if they would want to sign up to be a 511NYRideshare member. Moreover, Next Door, an online platform that allows public agencies a free account that can be used to make posts to very specific neighborhoods, is being explored. 511NYRideshare plans on utilizing this platform to post “ads” about carpooling and signing up for 511NYRideshare to find ride share matches, to potentially get more people in a small area that would have better chances of matching with each other.

The 511NYRideshare marketing team had also conducted a paid social media campaign with several images, attempting to bring in the emotional aspect of TDM with consumer-focused messaging such as: “Time to stop for coffee? Yes please” and “Get home in time to read your kids a story before bed” as shown in Figure 14 and Figure 16. In addition, the employer-focused ads on LinkedIn spoke to doing good for the community, employee job satisfaction, and getting and keeping the best talent, as shown in Figure 15. The campaign delivered
4,472,508 impressions across Facebook and LinkedIn, and the Google banner ads delivered 39,756 clicks. Since then, the 511NYRideshare team has been working to increase this type of messaging in regular social media posts, and to incorporate it into collateral.

Incentives

A variety of incentives can be used to encourage commuters to ride with others and travel during off-peak hours or to forego commuting in favor of telework.

Incentives for Carpooling or Transit Use

San Diego Association of Governments’ (SANDAG) [Carpool Incentive Pilot Program](https://transportation.ucsd.edu/_files/CarpoolIncentiveParticipationAgreement.pdf) provides a $50 gift card to new carpool drivers who sign up through the Waze Carpool app and complete ten trips within the first 90 days. The pilot also covers passenger fees for ten trips over a 90-day period. The program is available to employees who work for companies that participate in the region’s [iCommute program](https://www.511nyrideshare.com/commute-benefits).

In the Buffalo Niagara region (Erie and Niagara Counties), a digital outreach strategy was branded as “Commute Perks with Go Buffalo Niagara” and ran during the month of December 2018. Using the e-rewards vendor TangoCard, threshold-based incentives of $10 rewards cards were offered to users who tracked at least 10 trips in the Trip Tracker New York app and to users who referred a registrant to 511NYRideshare. TangoCard distributes rewards via email and allows users to choose from dozens of brands and nonprofits to spend their reward at, either online or in stores.

Employer and Employee Incentives for Commuter Benefits

In the Washington, DC region, a range of local governments offer incentives for employers to start offering a commuter benefits program to their employees. For instance, Montgomery County, Maryland offers a Fare Share program, to help companies start or boost their commuter benefits programs. Fare Share matches 100% of a company’s contributions to commuter benefits up to $50 per employee per month, for up to a one-year

43 SANDAG. (n.d.). https://transportation.ucsd.edu/_files/CarpoolIncentiveParticipationAgreement.pdf
Fairfax County, Virginia offers a similar SmartBenefits® "Plu$50" incentive program that directly offers employees who are new to transit and do not already own a SmarTrip® card a free $50 card to try transit. The program sends the SmarTrip® card to the employer and works with the employer to load the free $50 benefit, as a way to encourage employees to take advantage of commuter benefits.

Partner Incentives

The nonprofit TDM program Commute Seattle partnered with a philanthropic organization of business leaders, Challenge Seattle, to distribute prizes to transit riders during Ride Transit Month in June 2018. Inspired by Willy Wonka and Oprah, prize patrols dressed in superhero costumes randomly distributed “golden tickets” and donated gift cards to transit riders across Washington State during a campaign called “Transit for the Win”. This whimsical effort had a big media impact, which helped Commute Seattle to build a stronger partnership with Challenge Seattle group, and now they work with Commute Seattle frequently to provide commuter incentives.

![Figure 17: Ride Transit Month Prize Patrol in the Seattle metro area. Source: CommunityTransit.](image1)

Gamification

Gamification is the use of gaming elements in a non-gaming context. Within a TDM context, gamification can be used in mobile apps to engage commuters and encourage more sustainable travel choices. For example, an app that encouraged environmentally-conscious commute choices during Earth Month (April) or National Bike Month (May) could employ leaderboards, badges, and other game elements to encourage friendly competition among the app’s users leading to increased program engagement. Gamification was used to great success by Motivate, the company that runs New York City’s Citi Bike bikesharing program, with its Bike Angels initiative. The Bike Angels program engaged Citi Bike riders to help address challenges related to rebalancing of bikes. Participants were awarded points by moving bikes from full stations to empty ones with point totals tracked on an online leaderboard. The top 5 Bike Angels were then awarded gift cards ranging from $100 - $25 each month. One participant famously averaged more than 500 miles a week of riding while rebalancing bikes in a competition to top the leader board. By gamifying the rebalancing problem, and pairing the gamification with modest incentives for participants, Motivate was able to improve the overall efficiency of the system and reduce its operating costs (rebalancing efforts initially constituted half of the Citi Bike’s operating costs). Similar strategies can be used in mobility tracker apps employed by TDM programs to encourage friendly competitions to reduce commute-related

44 Montgomery County Department of Transportation, https://www.montgomerycountymd.gov/dot-dir/commuter/fareshare/

greenhouse gas emissions or accumulate the most bicycle commuting miles within a given time period.

Toll Credits

Although the Pittsburgh region does not have toll roads outside of the Pennsylvania Turnpike, it is worth noting that some regions have also created incentives for shared modes through toll credits or similar programs. In the San Francisco Bay Area, Metropolitan Transportation Commission (MTC) provides qualified vanpools with “non-revenue transponders” – a process they already have in place for public transit buses that go through toll crossings. The transponders let the vanpool go through the toll crossings without incurring any expenses and without having to wait in line for a tollbooth attendee to verify the vanpool qualified for toll waivers.

To reduce congestion and SOV use along the heavily traveled I-85 corridor, Georgia’s State Road and Tollway Authority’s (SRTA) Shift Commute Commuter Credits pilot program offered existing HOT lane users a $3 weekly toll credits for reducing their weekly peak period commutes from 4 or greater to 3 or fewer. Likewise, existing Express Lane users were offered daily $3 toll credits for carpooling and $2 toll credits for taking an express bus during peak periods. Following a successful pilot period that saw noticeable shift to off-peak periods and alternate modes among participants, SRTA continued the Commuter Credits program on a permanent basis. Program participants can now earn up to $120 in toll credits over a three-month period by shifting their commutes to off-peak hours.47

Employer Feebate Programs

Feebates are a type of pricing mechanism that penalizes unfavorable consumer decisions and rewards favorable ones. In the transportation demand management context, feebates charge drivers who commute alone and pass the collected revenues along to transit commuters. This approach is largely untested in the United States, however with funding from FTA’s Mobility on Demand Sandbox initiative, the City of Palo Alto’s Bay Area Fair Value Commuting Demonstration is testing and evaluating a feebate scheme with 11 area employers that employee more than 27,000 workers. The pilot project includes the following five components:

- Vendors provide Enterprise Commute Trip Reduction software to automate employer commute trip programs
- Use of a Mobility Aggregation app integrates multimodal trip planning
- A “revenue-neutral workplace parking feebate” charges SOV commuters who park at participating workplaces a fee and rebates that revenue to non-SOV commuters at no cost to participating employers
- “Gap Filling” identifies commutes with limited alternatives and provides appropriate remedies (e.g., an e-scooter “loan-to-own” to provide transit first mile-last mile connectivity)

• Institutional and systemic barriers are analyzed to further remove obstacles to multimodal travel choices\(^{48}\)

Evaluations of this program are underway at the time of writing.

10. Advancing Implementation

Public-private partnerships (P3) with shared mobility service providers can be an effective means of advancing TDM program goals without the need for significant public expenditures. Likewise, pilot programs and projects allow implementing agencies to evaluate feasibility of rapidly evolving shared mobility options on a limited scale and with limited risk. This section of the report highlights a few examples of agencies that have effectively used P3s and pilots to advance MOD and shared mobility options to meet local goals and needs. For further info, Shared-Use Mobility Center’s [Policy Database](https://www.transit.dot.gov/sites/fta.dot.gov/files/FTA%20MOD%20Project%20Description%20-%20Palo%20Alto.pdf) provides a continuously updated catalog of new mobility P3s and pilot programs (these can be filtered by mode, topic, and geography).

Partnerships with Private Sector Mobility Service Providers

Partnerships with private sector mobility service providers like Uber and Lyft can improve connectivity to trunk-line transit for workers and residents located beyond a reasonable walking distance. Conversely, partnerships with private sector mobility service providers can potentially substitute for transit routes where existing lines have low demand or lack cost effectiveness.

In addition to providing first mile-last mile transit connections and substituting for low-performing transit routes, partnerships between public agencies or employers and private sector mobility service providers have sought to further the following objectives:

- Provide a guaranteed ride home for ridesharing program participants
- Extend transit service hours
- Improve the cost effectiveness and responsiveness of paratransit service
- Alleviate demand at overcrowded parking lots used by rail commuters
- Move employees between nearby job sites

This section provides a few noteworthy examples of employers and public agencies that have formed partnerships with private sector mobility providers to meet these aims.

Partnerships Between Transit Agencies and Ridesourcing Companies

In 2016, the Pinellas Suncoast Transit Authority (PSTA) piloted the Direct Connect program, which uses subsidized ridesourcing and taxi services to provide first mile-last mile connections to trunk-line bus routes for the St. Petersburg, Florida area. Following initial success, the program expanded its geographic coverage beyond the pilot service area and saw ridership increase by more than 400 percent within the span of a five-month period in 2017. In 2019, the program provided $5 discounts on ridesourcing trips with Uber and taxi trips to many designated pick-up and drop-off points in the area.

Figure 18. PTSA staff demonstrates use of the agency’s Direct Connect program. Source: PTSA.

In addition to PTSA’s DirectConnect program, the agency’s Transportation Disadvantaged (TD) Late Shift program offers door-to-door service for workers whose jobs begin or end between 10pm – 6am (participation in the program costs riders just $9 more than the standard monthly bus pass fare). Door-to-door service is also offered for qualified individuals who cannot use the bus for some of their trips at a cost of $3 per one-way trip. As part of the Federal Transit Administration’s MOD Sandbox program, PSTA is also partnering with for-hire vehicle companies to provide paratransit service to individuals with disabilities.

Ridesourcing Partnerships to Alleviate Parking Congestion

In 2016, the City of Summit, New Jersey partnered with ridesourcing providers to increase commuter rail ridership. As part of the program, Summit residents with existing parking permits at the railway station have their ride costs to the station waived thereby freeing additional parking capacity. Participants without a parking permit pay $2 each way, which is equivalent to the cost of daily parking ($4). Following initial success, the program was expanded from 250 to 300 participants in November 2018.49

Replacing Bus Routes with Microtransit

Arlington, TX, a city of approximately 400,000 residents in the Dallas-Fort Worth metro area, partnered with ridesourcing company Via in December 2017 to pilot a program that would replace the city’s sole bus route. The pilot provides a geofenced area in which riders can travel anywhere for a $3 flat fare in 10-person passenger vans (the pilot also includes a few paratransit vehicles). This area serves approximately 120,000 residents and over 80,000 jobs. Rides can be hailed with smartphones or through a call center and can be paid for using a reloadable credit card and other digital payment options. Riders can also purchase a $15 ViaPass that allows them to ride up to four times a day throughout the week (service hours are from 6 am to 9 pm on weekdays and 9 am to 9 pm on Saturdays).

Within the first year of its launch, the program provided more than 85,000 rides with an average wait time of less than 12 minutes. Given the program’s success, the City renewed its contract with Via for one-year at an estimated cost of $1.8 million, with FTA covering slightly less than half of program costs.50

Employer Partnerships with Shared Mobility Service Providers

Kite Pharma, a pharmaceutical firm headquartered in Santa Monica, CA, has partnered with Lime to help address the last mile challenge and to move employees between the company’s sites using shared bikes and e-scooters. As of January 2018, just weeks after the program’s launch, more than 100 employees have participated in Kite Pharma’s bicycle and scooter safety training program.51 This represents over 22% of the firm’s 447 employees.

Using Pilot Programs/Projects as First Steps

Pilot programs and projects offer implementing agencies an opportunity to test and evaluate new mobility options while limiting risks and expenditures. The examples below illustrate approaches that agencies can take to identify opportunities, develop and implement pilots, evaluate pilot results, and expand incrementally where these pilots are shown to be successful.

51 Fuhrer, T. CommuteCon 2019 [presentation].
Serving Rural Residents with Shared Mobility Options

The San Joaquin Regional Transit District (RTD) serves the Stockton region in California’s Central Valley. RTD’s 1,426 square mile service area includes significant rural and agricultural areas. In October 2018, RTD launched VanGo!, an on-demand service that uses wheelchair accessible agency vehicles that run throughout the week from 8am – 5pm. The service includes free transfer to fixed-route bus service (excluding express and commuter buses). RTD partnered with Ecolane to develop the technology enabling the VanGo! mobile application. Significantly, the service allowed pick-ups and drop-offs in rural areas of the pilot service area. Riders could book trip using the mobile app or by calling a 1-800 number.52

In 2019, RTD extended the pilot to include 4 service areas, all of which provide coverage for rural residents. Additionally, service hours and days were extended from 6am – 6pm on weekdays and from 6am – 10pm on weekends.53

Testing a Mobile App that Rewards Travel Shifts to Off-Peak Hours

Bay Area Rapid Transit (BART) is the rapid transit provider for the San Francisco Bay Area. With funding from a Federal Transit Administration grant, the agency’s BART Perks Beta seeks to shift more BART travel to off-peak hours to alleviate overcrowding issues. The second phase of the BART Perks Beta builds on lessons from an earlier pilot. For the second phase, BART partnered with an app developer (Metropia) that uses insights from behavioral economics to influence traveler behavior. Users of the app are offered progressively higher reward points for travel behavior that supports the program’s objectives. Reward points can be redeemed for gift cards to stores and local restaurants.54 The second phase of BART Perks Beta is scheduled to end on May 31st, 2019 after which BART will evaluate the pilot program’s effectiveness and explore next steps with the agency’s Board of Directors.

Moving from Priority Project Identification to Funding and Implementation

Bellevue is a mid-sized city located across Lake Washington to the east of Seattle. The City of Bellevue’s Smart Mobility Plan (2018) focuses on six technological drivers of change expected to impact its transportation system in the next 5 years.

- Shared Use Mobility
- Autonomous & Connected Vehicles
- Electric Vehicles

54 Metropia. (n.d.) https://metropia.com/metropia-mobile-app
Within these six initiatives, the Smart Mobility Plan identified 30 priority projects for implementation that will demonstrate Bellevue’s technology leadership and attract partnerships with the private sector. Building on one such priority project identified in the Smart Mobility Plan, the cities of Bellevue and nearby Kirkland, Washington submitted a USDOT grant application in May 2018 to cover a third of costs associated with implementing an autonomous shuttle program called CommutePool Network (CPN) that would support Vision Zero along with these municipalities’ GHG and VMT reduction goals. Figure 21 illustrates the envisioned functionality of the CPN network, which would provide many of the Smart Mobility Plan’s desired accessibility, sustainability, and mobility benefits.

Figure 21. CommutePool network example. Source: City of Bellevue/City of Kirkland.

The application includes support from dozens of deployment partners (including public sector stakeholders, Amazon, and the commute management platform Luum), employer partners (including many major companies headquartered in the region), and research evaluation partners (including UC Berkeley and University of Washington). The CPN grant application is pending USDOT approval at the time of writing.\(^{55}\)